
 
  

  
  
  

 
 
 
 
Project Plan
Software Engineering Group 6
23/2/2012: Project Plan, v1.0
February 2012 - First Deliverable 
  
  
  
  
 
 
 
 
 
 
 

 



Contents: Page no: 
 
Project Introduction ........................................................................................ 3 
Project Outline ........................................................................................ 3 
Project Schedule ........................................................................................ 4
Conflict Resolution Plan …......................................................................... 4/6

Group Conflict …............................................................. 4
Loss of Group Members ................................................................. 5
Deadlines ................................................................. 5
Work Quality ................................................................. 6
Group Website  ................................................................. 6

Phase Plan  ........................................................................................ 7
Project Milestones …............................................................. 7/8
Detailed Project Plan …............................................................. 9/11

Organisational Plan  ........................................................................................ 12
Gantt Chart …............................................................. 12/23
Responsibilities …............................................................. 24

Team Leader …............................................................. 24
Analysis Team ................................................................. 24/27
Design Team ................................................................. 28/29
Programming Team ................................................................. 30/31
Quality Assurance Team.............................................................. 32/39

Peer assessment plan .............................................................................. 40/41
Bibliography .............................................................................. 42
Sign Off Sheets ….......................................................................... 43/44
 

 

 



 
Document name: Software Engineering Group 6 / Team Good / Project Plan Doc
Document author: Team Good
Document auditor: Rob Leggatt, Devendra Magar / Team Good Members
Document version: v1.0
 
23/2/2012: Project Plan, v1.0
Actions: Team Good finalising Project Plan deliverable.

Project Introduction
Project Outline
 
We have been asked to provide a working implementation of a two-player game. The basis 
of the game is a simulation of two ant colonies set free in an enclosed ‘world’. The world is 
otherwise populated by sources of food, and rocks which obstruct movement. The ants are tasked 
with negotiating the terrain of the world to find food and return it to their colony. To help ants 
navigate and communicate, they are able to mark areas of the world with pheromones which 
other ants can detect. Ants will also have the ability to kill members of the opposing team by 
finding and surrounding them. The player whose colony manages to return the most food to their 
respective base by the end of the simulation wins the game. 
 
Players influence the behaviour of their ants by constructing an ‘Ant-Brain’ using simple, low-
level instructions. Each ant in a given colony uses the same brain, which is compiled before the 
simulation begins and cannot be changed during the simulation. In this way, the aim of the game 
is simply to produce the best Ant-Brain.
 
The main features of the project are:

● A GUI that allows players to upload their Ant-Brains, pick a world, and run the 
simulation.

● A visualisation of the simulation as it runs, with dynamic feedback on the progress of 
each player’s colony.

● A program to generate randomised worlds to be used in simulations.
● A ‘Contest Mode’ whereby any number of players may upload Ant-Brains and pit them 

against each other in a series of simulations to determine an overall winner.
● The design and implementation of a high-level language to facilitate the construction of 

effective Ant-Brains.
 
 
 
 
 
 
 
Project Schedule-

 



 
Major milestones for the project are as follows:

Deliverable Due Dates

Project Plan/Group Website 23/02/2012

Requirements Spec./ Acceptance Criteria/
High Level Design Spec.

12/03/2012

Detailed Design Spec. 01/05/2012

Source Code/Test Spec./User 
Documentation/Peer Assessment

11/06/2012

Presentation to Customer 13/06/2012
  
   
Conflict Resolution Plan
 
Group Conflict
 
As with all group projects there is the potential for internal conflicts to arise between team 
members. Any conflicts will be handled by talking things through with the Team Leader. In the 
event of the team leader being the issue, the leader of the Quality Assurance team will be the 
port of call. This is to allow people to discuss issues in order to negotiate a resolution that the 
entire team will be happy with. If it is not possible to come to a satisfactory agreement, the whole 
group will be brought in to discuss the issue. If the group can come to a consensus (whether by 
popular vote or otherwise) then the matter will be left at whatever the group decides. If a group 
member disagrees or still has an issue they may then discuss the issue directly with the tutor. 
This will also happen if the group are unable to come to a consensus.
With all going to plan any/all problems will have been addressed prior to the end of the course. 
However, if there is a group belief that a single person has shirked their duties it will be reflected 
in their peer assessment.
  
Loss of Group Members
 
If a group member drops out, an emergency meeting will be held to discuss whether it is still 
viable to deliver the negotiated extras of the project. If possible people will be reassigned to re-
balance the team. Should it be agreed that a particular negotiable or deadline cannot be met in the 
absence of the team member, the Team Leader will contact the customer to inform them of the 
problem, and discuss the deliverable.
  
Deadlines
 

 



To prevent a deadline being missed, the following system will be implemented.
·        All work will be completed at least 72 hours before a deadline, so the entire team can meet to 

review the work prior to hand in, eliminating any potential errors in the work.
·        The team responsible for the piece of work will complete it at least 24 hours prior to the review 

to give the team a chance to read through the work prior to the deliverable meeting.
·        This will ensure that work is completed at least 96 hours before a deadline so there is still time 

to make adjustments if they are required.
 

Note: IF A TEAM IS UNSURE THAT THEY CAN COMPLETE THE WORK IN THE 
REQUIRED TIME FRAME THEY MUST ALERT THE PROJECT MANAGER AT THE 
EARLIEST POSSIBLE OPPORTUNITY.
 
If a deadline is missed due to a team failing to notify the Project manager of a problem, the 
person(s) responsible will be issued with a formal warning that will be taken into account when 
it comes to peer assessment. An extension period of 24 hours will be allocated and if possible 
additional personnel will be assigned to the task.
 
If the extended deadline is missed, an additional formal warning will be recorded and tutors 
will be informed who is directly responsible for the missed deadline. If an unofficial deadline 
is missed then there will not be a penalty unless it causes disruption to the team as a whole. If 
it causes disruption to another team or delay to the project, the failure will be noted for peer 
assessment purposes. If the extended deadline (as before, 24 hours) is missed it will be recorded 
and taken into account when peer assessment comes round.
  
   
 
Work Quality
 
If a team member does not have expertise in the field that they have selected or have been 
assigned to for the project, it will be expected that they should seek help either from other team 
members or tutors before deadlines. If a team submits work which is deemed to be unsatisfactory 
by the rest of the group a member of the Quality Assurance team will discuss the work with 
them. They will then be given a chance to improve the work. If the work is still unsatisfactory it 
will be reflected in the Peer Assessment.
  

Group Website - teamgood.github.com
 
The software house will create and maintain a web page which all the Deliverables of the 
AntWorld project will be available for access. The web page will contain the name of the group 
(Team Good), software house member names and links to the Deliverables that have been 
submitted. These documents must always contain the name of the Deliverable and date the link 
was added in reference to he Configuration Management found in the Quality Manual. 
 
Note, that once the documents have been submitted, modification must NOT occur. However, 

 



if modification after submission were necessary, due to detection of problems in the work 
submitted, then an additional link to a new version of a document shall be allowed.
 
The Programming team have been assigned the role of creating and maintaining the website, this 
includes updating it with links to deliverables when they are submitted. The website is scheduled 
to be completed by 23/02/2012.
 
 

 



Project Phases Plan
 
The phases of the project will have a structure similar to the Waterfall method. The selection of this 
prescriptive process model was based on the encountering of a “well-defined project requirements” for 
the AntWorld Game project. Therefore, there is going to be a sequential approach (one set at a time) in 
the development stage where it start with customer specification of requirement's (communication) and 
advances through planning (estimating, scheduling, tracking), modelling (analysis, design), construction 
(code, test), deployment (delivery, feedback). In order to avoid the disadvantage of this method, such as 
lack of feedback and tasks dependencies between the sub-teams, the software house intends to use some 
techniques commonly known as the Agile methods. Some of these practices include: the usage of fair 
amount of face-to-face communication when necessary and collaboration between team members.   
Project Milestones
 
  Task A)Internal Deadline B)

Actual Deadline
Task Duration Dependencies

A Project Plan/Group Website A)Monday 20th Feb 2012
B)Thursday 23 Feb

 7 Days  

B Requirements Spec.
Analysis and high-level 
design 

 A) Monday 20th Feb 2012
B)Thursday 23rd Feb

14 Days  

C Acceptance Criteria A)Monday 30 Apr 
B)Thursday 3 May

 14 Days B

D High Level Design Spec. A)Monday 5 Mar
B)Thursday 8 Mar

21 Days B

E Detailed Design Spec. A)Monday 5 Mar
B)Thursday 8 Mar

14 Days B,D

F Source Code A)Monday 7 May
B)Thursday 10 May

 28Days D,E

G Test Spec. A)Monday 7 May
B)Thursday 10 May

 28Days F

H User Documentation A)Monday 7 May
B)Thursday 10 May

 28 Days   

I Peer Assessment A)Monday 20 Feb
B)Monday 23 Feb

 14 Days  

J Customer Presentation  A)Monday 7 May
B)Thursday 10 May

 3Days   

   
In the table, the Tasks introduces the assignment(s) for each software house team is to do. 
Deadlines have two sections, A and B. A is the group finishing date, this is because if any 

 



conflicts occur within the process, the group can assign another member to the task, so that 
the project work meets the customer’s expected deadline. B is the official finishing deadline 
and final submission date. Task Duration specifies the amount of time a team has on a specific 
deliverable that needs to be completed within the specified time. It can be used to manage 
organisation for time efficiency. In the table, Dependencies show what deliverables are required 
for completion so that following tasks may be finished.    

 

Figure 1. PERT Network for Project Tasks/Deliverable
-------------> Start Line | -------------- isReadyToSubmit | <-----------------> ReferenceTwoDiagram
 
The Diagram above shows the clear Project Milestones. All team members will follow this diagram to carryout their 
responsibilities by given time. Below, the detailed project plan shows exactly what each deliverable involves. 
 
 
 
 
 
 

 



Detailed Project Plan:
1

1.1  Contents
1.2  Introduction

1.2.1 Brief of Project
1.2.2 Base Features
1.2.3 Extra Features
1.2.4 Deadline Timetable
 

1.3  Conflict Resolution Plan
1.3.1 Group Conflict
1.3.2 Loss of Group Members
1.3.3 Deadlines
1.3.4 Quality Issues

1.4  Phase Plan
1.4.1 Project Phases
1.4.2 Project Milestones

1.5  Organisation Plan
1.5.1 Team Layout
1.5.2 Analysis Team and Responsibilities
1.5.3 Design Team and Responsibilities
1.5.4 Programming Team and Responsibilities
1.5.5 Quality Assurance Team and Responsibilities

1.6  Peer Assessment Plan
  

2         Group Website
2.1   Design and Plan : Content/Layout/Style
2.2   Implementation of Plan

  
3         Requirements Spec.

3.1  Introduction
3.2  Analysis Model

3.2.1 Behaviour
3.2.2 Abstractions
3.2.3 CRC Cards
3.2.4 Scenarios
3.2.5 Class Diagrams
3.2.6 Object Diagrams
3.2.7 Performance Requirements
3.2.8 Constraints of Design

4         Acceptance Criteria
4.1  Testing

4.1.1 Determine hardware of test bed
4.1.2 Choose software environment for tests
4.1.3 Determine Normal and Peak load conditions
4.1.4 Determine Necessary data files
4.1.5 Ensure all materials are gathered to allow testing

4.2  Acceptance Tests
4.2.1 Finding section to test
4.2.2 Deciding on prerequisites for the test

 



4.2.3 Describe the test and expected result
5         High Level Design Specification

5.1  Introduction
5.2  Architectural Design

5.2.1 Concurrencies
5.2.2 Class Diagrams
5.2.3 Object Diagrams
5.2.4 Class Categorisation
5.2.5 Choose coding style

5.3  Common Tactical Policies
5.3.1 Localised Mechanisms
5.3.2 Handling Policies

5.4  Requirements Cross-Reference
5.4.1 Ensure Corresponding sections have the same names
5.4.2 Provide a reference table for any cross-referencing

6         Detailed Design Spec.
6.1  Introduction
6.2  Detailed Design

6.2.1 Identify Abstractions
6.2.2 Object Diagrams
6.2.3 Class Diagrams
6.2.4 Abstract Classes
6.2.5 State Diagrams
6.2.6 Changes from High Level Design Spec

7         Source Code
7.1  Coding

7.1.1 Set up version control system
7.1.2 Analyse Design
7.1.3 Allocate responsibilities amongst the team
7.1.4 Complete code and documentation for base simulation
7.1.5 Complete GUI code and documentation
7.1.6 Complete compiler for high-level ant-brain language and integrate into GUI

7.2   Error Checking
7.2.1 Correct errors that become apparent in testing
7.2.2 Re-check through testing

8         Test Specification
8.1  Test Scope

8.1.1 Define Functional and Performance Criteria
8.1.2 Define Design Criteria

8.2  Test Plan
8.2.1 Testing Phases
8.2.2 Stub or scaffolding (Overhead software)

8.3  Test Procedures
8.3.1 Test Software description
8.3.2 Overhead software description
8.3.3 Expected results
8.3.4 Test case data

8.4  Test Documentation
8.4.1 Test Results
8.4.2 Corrections that may be required

9         User Documentation

 



9.1  User Documentation
9.2  Installation Instructions
9.3  User Manual

9.3.1 Interface
9.3.2 Functionality

10    Peer Assessment Documentation
10.1       This should be fleshed out for software engineering purposes.

11 Customer Presentation
11.1   Choose Presentation Team
11.2   Presentation Planning
11.3   Presentation

  
 

 



Organisational Plan
 
Each software team has created their own responsibilities/plans in this section. Each plan has 
been read through by the team leader and the Quality Assurance team for approval. A Facebook 
group has been set up to ensure that the team can communicate with all other team members 
quickly and easily with little hassle. The instant chat function on Google Docs will also be used 
to allow team members to collaborate while they work. Teams may used other mediums for 
internal communication that does not concern the rest of the team.
 
Team Structure: Controlled Decentralised
Team Leader:  Rob Leggatt
Design Team: Rob Leggatt, Simon Turner
Analysis Team: Devendra Magar, Wojciech Tolsdorf 
Programming Team: David Sheldrick, Josh Pettitt
Quality Assurance Team: Victor Navarro, Wai (Lukaz) Leong 
 
GANTT Chart
 
A Gantt chart has been produced to represent the flow of the project. The majority of the tasks 
from the phase plan are represented in the graph, along with estimated time frame for each task. 
Tasks which were deemed to be to short/insignificant have been removed from the chart to aid 
simplicity. The Gantt chart has been written around the deliverable deadlines and the internal 
group deadlines related to each deliverable. However, the group may work faster than this and 
it may be necessary in future to revise the slack on the project if progress accelerates when 
compared to initial estimates. For ease of reading, alongside the Gantt chart we have included 
a calendar that includes all of the same information as the Gantt chart in an easy to read format. 
(Note: Some tasks did not fit directly on the calendar and have been printed on an overflow 
page). The calendar shows deadlines more clearly than the Gantt chart as it would have been 
impractical to print the Gantt chart on a larger piece of paper.
  
 

 



 

  

 



 



February 2012
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

01 02 03 04 05

06 07 08 09 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29

Software Engineering Project, 93 days

 Design and Plan : Content/Layout/Style, 6 days

Software Engineering Project, 93 days

 Design and Plan : Content/Layout/Style, 6 days Implementation of Plan, 5 days

Software Engineering Project, 93 days

Implementation of Plan, 5 days Submission

Software Engineering Project, 93 days

CRC Cards, 2 daysWebsite Update

Behaviour, 1 day Determine Normal and Peak load conditions, 2 days

Abstraction, 1 day Class Diagrams, 3 days

Determine hardware of test bed, 1 day Object Diagrams, 3 days



 Overflow Tasks

 ID  Name  Start  Finish

 20  Choose software environment for tests  Mon 27/02/12  Mon 27/02/12
 30  Concurrencies  Mon 27/02/12  Tue 28/02/12



March 2012
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

01 02 03 04

05 06 07 08 09 10 11

12 13 14 15 16 17 18

19 20 21 22 23 24 25

26 27 28 29 30 31

Software Engineering Project, 93 days

Scenarios, 2 days

Determine Necessary data files, 2 days

Class Diagrams, 3 days

Object Diagrams, 3 days Class Categorisation, 2 days

Software Engineering Project, 93 days

Class Diagram, 2 days Performance Reqirements, 2 days Constraints of Design, 2 days

Object Diagrams, 2 days Finding section to test, 1 day Describe the test and expected result, 2 days

Ensure all materials are gathered to allow testing, 2 days Deciding on prerequisites for the test, 2 days Ensure Corresponding sections have the same names, 2 days

Class Categorisation, 2 days Localised Mechanisms, 3 days Provide a reference table for any cross-referencing, 2 days

Software Engineering Project, 93 days

Constraints of Design, 2 days

Describe the test and expected result, 2 days

Ensure Corresponding sections have the same names, 2 days

Provide a reference table for any cross-referencing, 2 days

Software Engineering Project, 93 days

Update Webpage

Software Engineering Project, 93 days



 Overflow Tasks

 ID  Name  Start  Finish

 34  Choose coding style  Sat 03/03/12  Mon 05/03/12
 37  Handling Policies  Tue 06/03/12  Thu 08/03/12



April 2012
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

01

02 03 04 05 06 07 08

09 10 11 12 13 14 15

16 17 18 19 20 21 22

23 24 25 26 27 28 29

30

Software Engineering Project, 93 days

Software Engineering Project, 93 days

Software Engineering Project, 93 days

Software Engineering Project, 93 days

Identify Abstractions, 2 days Object Diagrams, 2 days

Class Diagrams, 2 days

Software Engineering Project, 93 days

Abstract Classes, 3 days State Diagrams, 2 days

Class Diagrams, 2 days

Software Engineering Project, 93 days

State Diagrams, 2 days

Changes from High Level Design Spec, 2 days



May 2012
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

01 02 03 04 05 06

07 08 09 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31

Software Engineering Project, 93 days

Changes from High Level Design Spec, 2 days

Software Engineering Project, 93 days

Update Webpage

Set up version control system, 3 days

Analyse Design, 4 days

Define Functional Criteria and Performance Criteria, 3 days

Software Engineering Project, 93 days

Complete code and documentation for base simulation, 11 days

Test Software description, 2 days

Analyse Design, 4 days Expected results, 2 days

Allocate responsibilities amongst the team, 2 days

Software Engineering Project, 93 days

Complete code and documentation for base simulation, 11 days

Complete GUI code and documentation, 6 days

Correct errors that become apparent in testing, 14 daysExpected results, 2 days

Test case data, 3 days

Software Engineering Project, 93 days

Complete code and documentation for base simulation, 11 days Complete compiler for high-level ant-brain language and integrate into GUI, 7 days

Complete GUI code and documentation, 6 days

Correct errors that become apparent in testing, 14 days



 Overflow Tasks

 ID  Name  Start  Finish

 67  Define Design Criteria  Thu 10/05/12  Mon 14/05/12
 69  Testing Phases  Mon 14/05/12  Tue 15/05/12
 70  Stub or scaffolding?  Mon 14/05/12  Tue 15/05/12
 72  Tests to be carried out  Mon 14/05/12  Wed 16/05/12
 80  User Documentation  Mon 28/05/12  Mon 04/06/12
 81  Installation Instructions  Mon 28/05/12  Mon 04/06/12
 89  Choose Presentation Team  Mon 28/05/12  Mon 28/05/12
 90  Presentation Planning  Tue 29/05/12  Mon 11/06/12



June 2012
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

01 02 03

04 05 06 07 08 09 10

11 12 13 14 15 16 17

18 19 20 21 22 23 24

25 26 27 28 29 30

Software Engineering Project, 93 days

Complete compiler for high-level ant-brain language and integrate into GUI, 7 days

Correct errors that become apparent in testing, 14 days

Software Engineering Project, 93 days

Complete compiler for high-level ant-brain language and integrate into GUI, 7 days

Correct errors that become apparent in testing, 14 days

Re-check through testing, 2 days

Software Engineering Project, 93 days

Presentation

Correct errors that become apparent in testing, 14 days

Re-check through testing, 2 days



 Overflow Tasks

 ID  Name  Start  Finish

 80  User Documentation  Mon 28/05/12  Mon 04/06/12
 81  Installation Instructions  Mon 28/05/12  Mon 04/06/12
 90  Presentation Planning  Tue 29/05/12  Mon 11/06/12
 77  Test Results  Mon 04/06/12  Mon 11/06/12
 78  Corrections that may be required  Fri 08/06/12  Mon 11/06/12
 83  Interface  Mon 04/06/12  Mon 11/06/12
 84  Functionality  Mon 04/06/12  Mon 11/06/12
 85  Peer Assessment Documentation  Fri 08/06/12  Mon 11/06/12
 87  Update Webpage  Mon 11/06/12  Mon 11/06/12



Project File Space(s):
 

● Teamgood.github.com
● teamgoodg6@gmail.com
● Google Docs

  
Responsibilities:
 
Team Leader Responsibilities:

1. Will be the communication hub between the team.
2. Each team will report to the team leader for any problems and queries.
3. Be the medium of communication between the customer and the team.
4. Will ensure Team meetings are regular.
 

 
Team Chair Responsibilities:

1. Overseeing the production of deliverables
2. Arranging and chairing Group Team meetings and Deliverable Review meetings

 
 
Team Recorder Responsibilities (Quality Assurance Team)

1. Agendas and Minutes for Group Team meetings,Deliverable Review and Customer  
meetings

2. Circulating Agendas and Minutes
 
 
Analysis Team Plan & Responsibilities (Devendra Mgr, Wojciech Tolsdorf): 
 
The Analysis team is responsible for the production of the Analysis Model for the Software 
Engineering project, by working closely with the Design Team. The team plan is to focus on 
the construction of the Requirements Specification document and the analysis of the system as 
a whole by producing appropriate UML diagrams for the required software, which can later be 
presented to the customer. 
 
The UML diagrams together with the Use Case diagrams will define how the potential users will 
interact with the program. Once the customer requirements are ready and approved, the team 
will begin creating scenarios of user interaction and user goals. Those goals and scenarios will 
be important for the Quality Assurance team during the construction of the Test Specification. 
They will also be helpful for the Design Team when making decisions about the User Interface 
Design. In addition to the UML Diagrams, the Class-Relationship-Collaboration (CRC) cards 
will also be produced to plan what classes are necessary for the project and how they will 
interact with each other.
 
As mentioned above, the Analysis Team will collaborate with the Design Team during the 

 

mailto:teamgoodg6@gmail.com
mailto:teamgoodg6@gmail.com
mailto:teamgoodg6@gmail.com
mailto:teamgoodg6@gmail.com
mailto:teamgoodg6@gmail.com


production of High-Level Design to make sure that it fully meets the Customer Requirements. 
The Customer Requirements will be assessed based on pre/post conditions, source of input, 
destinations of output and side effects.
 
Finally, the Analysis Team will be also responsible for the production of the User 
Documentation. The User Documentation will include the User Licence, User Manual and the 
Installation Procedure. These will be produced in collaboration with the Design and Programing 
teams, as they will have detailed insight on the proposed system. Also, if necessary, the Analysis 
Team will be assisting the Design and Programming teams in the design of the graphical user 
interface to make sure that it meets the Customer Requirements. 
 
Individual Responsibilities:
 

● Team Representative(Devendra Magar)
● Recorder(Wojciech Tolsdorf)

 
Project phase and individuals responsibilities:
 

● Project Plan - Devendra Magar & Wojciech Tolsdorf 
● Requirement Specifications - Devendra Magar & Wojciech Tolsdorf 
● User Documentation - Devendra Magar & Wojciech Tolsdorf 

Elements of the analysis model and staff allocation:
 

Flow-oriented Elements
● Data flow diagrams

 
Staff allocated to complete the task – Devendra
Schedule completion – Spring - Week 8/Thursday
 

Scenario-based Elements
● Use-cases-text
● Use-case diagrams
● Swim lane diagrams
● Activity Diagrams

 
Staff allocated to complete the task – Devendra Magar and Wojciech Tolsdorf
Schedule completion – spring – Week 9/Thursday
 

Elements of Analysis Model
Behavioural Elements

● State diagrams
● Sequence

 
Staff allocated to complete the task –  Wojciech Tolsdorf

 



Schedule completion – spring - Week 10/Thursday
 

Class-based elements
● Class Diagram
● Analysis packages
● CRC models
● Collaboration diagrams

 
Staff allocated to complete the task – Devendra Magar
Schedule completion – Spring - Week /10/Thursday
 
 
PERT CHART
Project Milestones – Analysis Team
Deliverable  

Start week Duration
Group Deadline Submission Deadline

 
Project Plan  
Week 4 14d
30/01/2012 13/02/12

 
 
 
 
Data Flow  
Week 4 2d
24/02/2012 14/03/12

   
Swin lane  
Week 4 2d
24/02/2012 14/03/12

 
Use cases  
Week 7 2d
20/02/2012 22/02/12

 
Activity  
Week 7 2d
20/02/2012 22/02/12

 
Collaboration  
Week 8 3d
27/02/2012 1/03/12

 



 
CRC  
Week 8 3d
27/02/2012 1/03/12

 
Class  
Week 8 3d
27/03/2012 1/03/12

 
Sequence  
Week 7 2d
03/03/2012 14/03/12

 
State  
Week 7 2d
03/03/2012 14/03/12

 
Design and Programming Phases

 
User Documentation  
Week 7 4d
28/5/2012 31/5/2012

 
Summer – Week 8
Spring – Week 10
Spring – Week7
* Use Case includes (Use-case text and Use-case diagram)
* Class diagram includes (Class diagram and Analysis Packages)
 
 
 
 
 
 

 



Design Team Plan & Responsibilities (Rob Leggatt, Simon Turner):
 
Design Team Responsibilities
 
The Design team will be responsible for organising the classes that the Analysis team have 
identified. They will organise how the classes will interact and work with each other, as well 
as producing an appropriate layout for the program in UML. Working as a bridge between 
the Analysis and the Programming team. Having collaborated with both the Analysis and 
the Programming team, they will decide the coding style for the project. Later on, they will 
produce a more in depth Design document to assist the Programming team in producing the best 
interpretation of the original Analysis Model.
 
Detailed Design Specification
 

Introduction - Rob
Architectural Design -

Concurrences - Simon
Class Diagrams - Simon
Object Diagrams - Simon
Class Categorisation - Rob
Coding Style - Rob

Common Tactical Policies -
Localised Mechanisms - Simon
Handling Policies - Simon

Requirements Cross Referencing 
Ensuring Corresponding Sections have the same names - Rob
Provide a reference table for cross referencing - Rob

 
Detailed Design Spec.

Introduction - Rob
Object Diagrams - Simon
Class Diagrams - Simon
Abstract Classes - Simon
State Diagrams - Rob
Changes from High Level Design Spec - Rob

 
 
 
 

 



PERT CHART
Project Milestones – Design Team

Deliverable  

Start week Duration

Group Deadline Submission Deadline

  

Project Plan  

Week 4 24d

30/01/2012 23/02/12

  

Detailed Design Spec  

Week 1 11d

17/04/12 30/04/12

  

High Level Design Spec  

Week 8 11d

27/02/12 09/03/12

  

Collaboration  

Week 3 80d

21/02/12 08/06/12

 
Summer – Week 8
Spring – Week 10
Spring – Week7

 



Programming Team Plan & Responsibilities (David Sheldrick, Joshua Pettitt):
 
The Programming team will have three main areas of responsibility:
 

● Collaboration with the Design team to facilitate the production of a workable and well-
structured program architecture.

● Source code implementation of the program.
● Collaboration with the Quality Assurance team to carry out effective testing and bug-

fixing.
 
The first task is to set up version control management. This will be done using Git, hosted on 
github.com. An appropriate branching model will be decided upon.
 
Before coding can begin, the Detailed Design specification will be mapped onto a series of 
programming tasks which will then be broken down into appropriate sub-tasks and allocated 
to team members. An iterative testing plan will be devised to run alongside code development. 
This process of assigning tasks and coding/testing will be done three times sequentially for the 
following program components:
 

1. Base simulation with parsers
2. GUI
3. High-level ant-brain language compiler

 
Individual Responsibilities:
 
Team Representative: David Sheldrick
Team Recorder: (David Sheldrick, Joshua Pettitt)
 
Project phase(s)and individuals responsibilities:
 

● Collaboration with the Design Team to produce a robust Program Architecture (David 
Sheldrick, Joshua Pettitt)

● Project Plan - (David Sheldrick, Joshua Pettitt)
○ Organisation Plan - (David Sheldrick)
○ Phase Plan - (David Sheldrick, Joshua Pettitt)

● Implementation of Source Code - (David Sheldrick)
● Troubleshooting and Bug - fixing - (David Sheldrick, Joshua Pettitt)
● Implementation of website and online repository - (David Sheldrick, Joshua Pettitt)

 

 



 
 
PERT CHART
Project Milestones – Programming Team

Deliverable  

Start week Duration

Group Deadline Submission Deadline

  

Project Plan  

Week 4 24d

30/01/2012 23/02/12

  

Group Web Site  

Week 7 17d

06/02/2012 23/02/12

  

Source Code  

Week 3 26d

07/05/12 31/05/12

  

Error Checking  

Week 5 14d

23/05/12 08/06/12

  

Documentation  

Week 8 7d

04/06/12 11/06/12

 

Testing Collaboration  

Week 3 80d

21/02/12 08/06/12

Quality Assurance Plan &Responsibilities (Victor Navarro, Wai (Lukaz) 

 



Leong):
  
The Quality Assurance Team has five core responsibilities that consist of:
  

● Production of their respective parts of the Project Plan; their sections of the Phase Plan 
and the Organisation Plan

● Production of the document deliverable: Acceptance Criteria
● Production of the document deliverable: Test Specification
● Adherence to the guide line protocols specified in the Quality Manual i.e. Configuration 

Management, production of Activity Sheets
● Production and recording of the Agendas and Minutes for all meetings especially 

Deliverable Review Meetings
  
All of the five primary responsibilities stated above are the core founding tasks that the Quality 
Assurance Team must ensure that are properly attended to. The team must thoroughly complete 
all necessary deliverable documents and conduct and ensure an obligatory standard based on the 
Configuration Management and Quality Manual is satisfied for the entire Group.
  
The Quality Assurance Team also have secondary responsibilities that include an overall look 
out for the productivity of the entire Group. As well as that, they must cater for the meetings 
providing all the necessary means of producing and circulating Agendas and Minutes.
  
Moreover, the Quality Assurance Team are an overseer for the Team Leader in the context of 
helping if conflicts arise and if further problems occur based on deliverables as well.
  
Acceptance Criteria:
  
The Acceptance Criteria is a document deliverable that is to be created by the Quality Assurance 
Team where it will contain the description of designed and chosen tests that are to be carried out 
on the designed and developed software program for the game. It is a document that will ensure 
that it meets the Requirements Specification.
  
There are two parts to be completed for the Acceptance Criteria:
  
 
 

● Test Environment
  
This section will have the description of the environments that will be used to carry out the 
tests for the software. It will also specify what kind of machine is used as well as that, multiple 
platforms of software that has been anticipated to be able to display and allow interactivity for 
the user audience. It also includes the load conditions and the data files necessary for the tests to 
be conducted.
  

● Acceptance Tests
  

 



Based on the Analysis Model that has been developed by the Analysis Team, the Acceptance 
Tests will be structured/based off of that model so that each test will have the following 
information provided (in respect to the specifications in the Analysis Model), Prerequisites (data 
files) to allow the test(s) to run and the test performance and its expected results recorded.
  
The Acceptance Tests is a ‘black box test’. A development of a ‘white box test’ will be found in 
the Test Specification, the secondary document deliverable of the Quality Assurance Team.
  
  
Test Specification:
  
The Test Specification will hold the descriptions of how all modules have been produced during 
the design and programming/implementation of the source code for the software. Each of these 
modules/phases will be tested accordingly within the Test Specification.
  
 Constituent parts of the Test Specification:
  

● Scope
 
The scope is the place where the description of the functionality, performance and design criteria 
for the software that is to be tested, can be found. It will be dependent on the Specification 
requirements as reference to it as well the Design hierarchy will be required. The scope is where 
a description of how the tests are appropriate for the schedule described within the Project Plan.
  
 
 

● Test Plan
 
This is where the ‘black box’ and ‘white box’ testing will be found. In reference of the 
Acceptance Criteria deliverable, this section of the Test Specification will have the testing 
activities into phases that will have descriptions of the tasks for the software.
  
It will include:
  

·         Test Phases: A list of the testing phases and the tasks involved for 
each.

·         Overhead software: For each phase, the stub or scaffolding it requires 
will be listed.

  
  

● Test Procedures
  
Within the Test Procedures a series of documentation is to take place; where four elements of the 
Test Procedures can be found. They are all relevant to the point where a test can be differentiated 
and identified, this is the key for the development of the test to better and enhance the overall 

 



quality of the software and it’s testing.
  
The Test Procedures will have:
  

·         Test Descriptions: Describing the tests carried out for specific elements of the 
software and other content.

·        Overhead software description: A description of the utilised scaffolding or 
stub used within the phase(s).

·    Expected Results: The resultant outcomes of the tests conducted, a 
characterisation of a successful test will be stated here.

·         Test Case Data: A collection of any data files that will be relevant for use to 
conduct the test will be documented here.
   

● Test Results
  
As there will be phases within the constituent parts of the Test Specification, the Test Results 
will serve as the place of archiving of the results of running each of the test phases. Of course, 
these phases can be iterated due to the expectancy of failed tests, therefore a double check 
ensures quality assurance within the development of not only the software but also the entirety of 
the project.
 
All of the tests will be documented and each test must have the following recorded accordingly:
  

·         Results: A bold statement about the produced results.
·         Status: A statement on whether the test was successful or not.
·   Action: A statement that precludes that because a test was 

unsuccessful, a corrective act should be carried out. This includes 
an assigned team member to carry out the test as well as who 
should perform to take the necessary action(s) for the test.

  
All testing will use the JUnit testing framework found within the local machines.

  
Individual Responsibilities:
 

● Team Representative: Victor Navarro
● Recorder(s): Victor Navarro & Wai (Lukaz) Leong

 
Project phase(s)and individuals responsibilities:
 

● Project Plan - Victor Navarro & Wai (Lukaz) Leong
○ Organisation Plan - Victor Navarro
○ Phase Plan - Waik (Lukaz) Leong

 
● Acceptance Criteria - Victor Navarro & Wai (Lukaz) Leong

 



○ Test Environment - Victor Navarro
○ Acceptance Tests - Wai (Lukaz) Leong

 
● Test Specification - Victor Navarro & Wai (Lukaz) Leong

○ Scope - Victor Navarro
○ Test Plan - Wai (Lukaz) Leong & Victor Navarro

■ Test Phases - Wai (Lukaz) Leong
■ Overhead Software - Wai (Lukaz) Leong & Victor Navarro

○ Test Procedures - Wai (Lukaz) Leong & Victor Navarro
■ Test Descriptions - Victor Navarro
■ Overhead Software description - Wai (Lukaz) Leong
■ Expected Results - Wai (Lukaz) Leong & Victor Navarro
■ Test Case Data - Wai (Lukaz) Leong & Victor Navarro

 
● Test Results - Wai (Lukaz) Leong & Victor Navarro

○ Results - Victor Navarro
○ Status - Wai (Lukaz) Leong
○ Action - Wai (Lukaz) Leong & Victor Navarro

 
● Management of adherence to the Quality Manual (Configuration Management) - Victor 

Navarro & Wai (Lukaz) Leong
○ Activity Sheets - Wai (Lukaz) Leong & Victor Navarro
○ Reviewing of Documents - Wai (Lukaz) Leong & Victor Navarro

■ Configuration Management - Wai (Lukaz) Leong & Victor Navarro
● Preliminary - Victor Navarro
● Checked in - Wai (Lukaz) Leong
● Checked out - Wai (Lukaz) Leong & Victor Navarro

 
● Production of Agendas and Minutes - Wai (Lukaz) Leong & Victor Navarro

 
Both members of the Quality Assurance team will alternate starting from Victor 

Navarro, for example the first two meetings will be documented and recorded by Victor and the 
next two by Lukaz. These will be posted on the forums available for viewing for all members of 
the group with efficiency and accessibility in mind. Moreover, the documents will also be 
available in the file spaces of the group.
 
Overview of Phase Plan for Quality Assurance: Test Specification
 
In order to provide a good final program to the customers, processes testing and debugging 
is required. At this stage, we will test the program with a series of tests to see if the program 
has any bugs that is preventing it from being able to run smoothly and correctly. The program 
will be ensured that the bugs are fixed by the Quality Assurance team and programming team 

 



if there are any bugs appeared on the program. If there is no problem with the program, the 
Quality Assurance team will make sure that the program is up to standard before delivering to 
the customers. The main tasks that the Quality Assurance team will cover are listed below:
 

● Smoke testing
 
This is just a quick review of the program. This is a test that would be done soon as the program 
is completed by the programming team, so the Quality Assurance team could take more testing 
in depth as shown below:
 

● Black Box testing
 
Black box testing is one of the most basic testing. This black box testing is not basely making 
test on the logical structure of the program, it is mainly making test on the user interface and the 
functional of the program. The Quality Assurance team will make test for the following options:
 
- Is the user interface good enough for the customers?
- Is input data and output data correctly working with the program?
- Does the program compile correctly with the customer requirements specification?
 

● White Box testing
 
White box testing is a more advance testing, this also meaning that this does require more 
programming skills. This white box testing is to mainly to work with the code, to check the 
structure of the code, logic of the code, find the problems of the code and debug it if there are 
any problems.
 

● User Acceptance testing
 
If possible, the Quality Assurance team would like to invite the customer to test the program to 
see if they are happy with the current program. We could possibly deliver some changes if the 
customer is not quite happy in some aspects.
 
From the testing tasks above, we could make sure that the program is up to standard and it is 
what the customer required. More importantly, the program will be running correctly at any 
points. During the testing, the Quality Assurance team may have to work with the other sub 
teams including Programming, Analysis and Design team to debug/ improve the program before 
handing the program to the customer.  
 
 
 
 
 
 
 

 



 
 
 
 
 
 
PERT CHART
Project Milestones – Quality Assurance Team

Deliverable  

Start week Duration

Group Deadline Submission Deadline

  

Project Plan  

Week 4 24d

30/01/2012 23/02/12

  

Acceptance Criteria  

Week 10 11d

27/02/2012 09/03/12

  

Test specification  

Week 7 111d

21/02/2012 11/06/12

  

Quality Manual Protocol  

Week 5 107d

07/02/12 24/05/12

  

Meeting Recording  

Week 3 91d

23/01/12 24/05/12

  
 

Collaboration  

 



Week 3 91d

23/01/12 24/05/12

  

Overseeing Team  

Week 3 91d

23/01/12 24/05/12

 

Testing Collaboration  

Week 3 80d

21/02/12 08/06/12

 
Summer – Week 8
Spring – Week 10
Spring – Week7

 



Peer Assessment Plan
 
For the Peer Assessment, there will be multiple opportunities for group members to rate each 
other. In order to implement this in a fair way, the following system has been devised:
 
Each person is given 100 points to split between the other members of the group. Each member 
will distribute their points between the rest of the members of the team, according to the amount 
of effort they believe that the person has put in on the specific deliverable as a whole. If they 
believe that a person has put in the amount of effort required of them for the deliverable they 
should give around 14 points as this is the average. If they believe a person has done more/
less work than was required of them they will award more/less points as necessary. Only whole 
values of points can be distributed.
 
Example:
 
Person 1 has 100 points to give to persons 2-8.
 
Person 1 gives Person 2 13 points as they feel Person 2 has done what is required of them.
Person 1 gives Person 3 0 points as Person 3 has not attended meetings or done any work.
Person 1 gives Person 4 20 points as they have done slightly more work than is required.
Person 1 gives Person 5 8 points as they have done slightly less work than they were required to 
do.
Person 1 gives Person 6 30 points as they have done far more work than they were required to, 
even helping other teams.
Person 1 gives Person 7 16 points as they feel Person 7 has done more than is required of them, 
though not as much as Person 4.
Person 1 gives Person 8 13 points as they feel Person 8 has done what is required of them.
 
This can then be tabulated to give a group consensus on whether a person has reached what 
should be 100% of the work required of them. This will mean that if everyone has done the 
work required of them they should all receive around 100 marks. This record will be made for 
EVERY deliverable, so as to give people who have under performed a chance to put more effort 
in later to redeem themselves. The results of every deliverable will not be submitted for marking, 
however the final results taken at the last meeting in the summer term will be. 
 
On top of this percentage system of peer review, it will be noted if a team member is deemed 
to have produced work that is either of notable quality, be it good or bad. A log of these events 
will be submitted alongside the percentile review at the end of the course. The final mark out of 
100 received that will be submitted for marking will be divided by 8 in order to conform with 
the specification for peer review. If there are any decimal values for marks then they will be 
distributed automatically (.1/.2/.3/.4 of a mark will be knocked off, .6/.7/.8/.9 of a mark will be 
rounded up). In the event of two people receiving .5 of a mark, the person with less marks will be 
rounded up. In the event of two people receiving .5 of a mark and both having the same number 

 



of marks, it will be up to the team to decide who receives the extra point (decided by popular 
vote). If this proves to be a stalemate it will noted in the documentation that they share the final 
mark.
 
Marks will be tabulated by the Team Leader, and the Team Leader will keep the ratings that 
people submit confidential so as to prevent team disputes. If any team member develops a 
problem with the Team Leader managing marks, they are free to raise it at any time. In the event 
of this occurring it is likely that management of the marks will be handed to a tutor, who will 
pass the final results back to the Team Leader.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Bibliography
 
There is no official course textbook we shall be using, because there are no right or wrong most 
books are so, we will pick from different books and lecture slides. Some of the book we shall 
use.

● Summerville, Software Engineering, 9th edition.
● R. S. Pressman, Software Engineering: A Practitioner's 

Approach, 6th edition. Another good resource for software 
engineering, if somewhat verbose.

 
Subsidiary texts are:

 



● Stevens, P. and Pooley, R., Using UML, Updated ed, 
Addison-Wesley, 2000. There may be newer editions by 
now.

● Gamma, E., Helm, R., Johnson, R. and Vlissides, J., Design 
Patterns, Addison-Wesley, 1995. This book is written in 
pseudo-C++ notation which should be easily readable for 
competent Java programmers. The web is full of translations 
of the design patterns in this book to Java (and other 
languages).

 


