

Testing Documentation
Software Engineering Group 6

11/6/2012: Testing Documentation, v2.0

May 2012 - Fourth Deliverable

Actions: Finalised

1

Contents: Page No:

Introduction...3

Testing Scope..4

Test Plan..5

Test Procedures...6

Test Results..45

Unit Test Results...46

Integration Test Results...48

Acceptance Test Results...48

Overview..55

References &
Bibliography..56

2

Introduction

Testing is an essential and important part of Software Engineering as it may be the difference
between a working and bug free product to an incomplete non-executable program. Within
this document, a series of documentation tests for how the source code for the Ant Game has
been produced will be recorded in a series of categorical testing.

There will be test phases that the source code will have to go through and both the Quality
Assurance Team and Programming Team will be working collaboratively to document all of
the necessary and relevant tests that would be advisable and relevant to the overall Ant Game
JavaScript program.

Throughout the testing, an account of what was said in the first deliverable on the basis of
testing shall be applied to this document. Therefore, the classifications of each type of testing
shall be integrated and accounted for i.e. White Box Testing and Black Box Testing will be
mentioned within this fourth deliverable.

The main purpose of this deliverable is to ensure that the program is refined and full proofed
with quality tests from aesthetics, functionality and perhaps fail safes have been implemented
into the source code. This testing document shall be evidence of the working and final
version of the Ant Game developed by Team Good, group 6 of the Software Engineering
course.

3

Testing Scope

The series of tests that are to be applied to the source code will be of a thorough and critical
assessment of the entire Ant Game developed by Team Good. The examination of its
functionality, performance, aesthetics and efficiency as a program will be looked through
where an analysis of its major achievements and drawbacks shall be highlighted throughout
the progression of testing. In doing so, what has been specified within the Customer
Specification (the first deliverable) shall be correlated to what will be said throughout this
document. Hopefully, all testing specifications that have been pointed out will be documented
and recorded within this to fully gain an understanding of how well the Ant Game has been
developed in the specific high level language of JavaScript code.

We must firstly take into consideration that the Programming Team has already developed
tests throughout the process of programming the Ant Game. Therefore the testing document
also has the purpose of representing those tests in a formal and user friendly manner. As the
development of the tests has been designed through the development of the source code, the
Quality Assurance Team needs to ensure that these tests are valid and relevant and actually
serve a purpose for testing all three elements of functionality, aesthetics and performance.

As the tests have been developed throughout the programming, every aspect and process
of development has been critically looked over for its contribution to the final development
of the Ant Game. Overall, this testing shall aid both the Programming Team and Quality
Assurance team that no errors have been overlooked and a final analysis of the software is
assured of an error free state for submission.

Key Criteria to be tested are:

● The correctness of the parsers
● The suitability of randomly generated worlds
● The correctness of the simulation (i.e. do the ants do everything that they should?)
● The functionality of the GUI (i.e. does it allow the user to do everything they need to

do with respect to the customer requirements.)
● The suitability of the GUI (e.g. how responsive is it? Does it work on all modern

browsers?)

4

Test Plan

For this section of the Testing deliverable, all of the specified types of tests shall be broken
down into a hierarchical level of phases that can be applied to the source code. These phases
will describe the tasks and overhead software that incorporates the types of testing such
as: ‘White Box Testing’ and ‘Black Box Testing’.

Firstly, the description of each variable element needs to be looked at, these variables will be
presented and briefly described for each phase of the testing. The variables will be placed in
an organised fashion within a table. These elements:

● Test Phases: A description of the phases and tasks involved with each test.
● Overhead Software: A phase may require overhead software.
● Test Procedures: A description of what needs to be carried out within the test.

Moreover, the data and the formalities that shall be recorded will include:

● Test Descriptions: A description of what tests are to be carried out in reference to the
phases.

● Overhead Software Description: A description of the software that aids the test shall
be described.

● Expected Results: A description of the successful criteria of the test, met or not met.
● Test Case Data: A description (state of name) of data files used for the specific test

based on the phases accounted for.

Testing is split into three distinct phases:

● Unit Testing
● Integration Testing
● Acceptance Testing

Each of these may involve the following strategies:
● White Box Testing

Ensuring that all possible branches of computation have been executed.
● Black Box Testing

Ensuring that functions/modules behave correctly

5

Phase 1. Unit Testing
Unit testing is carried out using the Nodeunit testing framework for node.js.
Phase 1.1. The Brain Parser

Function to Unit Test Description Required Scaffolding

_parseInt Converts strings representing
integers into numbers.

none

_parseLine Parses a single instruction Sample instructions, and
expected outputs for deep
comparison.

parseAntBrain Parses an ant source file Sample source files, and
expected outputs for deep
comparison

Phase 1.2 The World Parser

Function to Unit
Test

Description Required Scaffolding

_parseGridLine Parses a single grid line from
world source file.

Sample grid lines, and expected outputs
for deep comparison.

_isSurroundedByRoc
k

Checks whether a given grid
has a solid border of rocks

A sample grid

_gridContains Searches a grid for a specific
cell type

A sample grid

_getElements Returns a list of 2D arrays
which represent the shape of
elements of some specified
target type. An ‘element’ here
is a contiguous region of one
particular cell type

A sample grid, and expected outputs for
deep comparison

_getElementBox Takes a list of coordinates and
places them in a 2D boolean
array (“box”), bouding them in
the process.

Some coordinates and expected outputs
for deep comparison.

_getElementCoords Returns a list of elements in the
format of coordinates which
comprise them.

A sample grid and expected outputs for
deep comparison

_getAdjacentCoord Gets the coordinates of a grid None (just numbers)

6

cell which is adjacent to a given
cell in a specified direction.

_containsLegalFoodB
lobs

Checks whether a given box
represents shapes which are
legal food blobs

Sample box.

_attemptBoxIntersecti
on

Tries to match a shape in a
given box, and returns the box
sans the shape on success.

Sample box, sample shape, expected
output.

_cloneBox Clones a box A sample box.

_cropBox Crops a box (removes blank
padding)

A sample box, expected output

_isLegalHill Checks whether the shape in a
box represents a legal hill.

Sample boxes.

Phase 1.3. Random World Generator

Function to Unit
Test

Description Required Scaffolding

_superimpose attempts to overlay a shape onto
a grid.

Sample grid, sample shapes.

generateRandomW
orld

Generates random worlds parseAntWorld to check validity of
generated worlds

Phase 2. Integration Testing
Integration testing is also carried out using Nodeunit.

Phase 2.1. The Simulation

Goal of the test:

To make sure that the behavioural mechanics of the game function in accordance
with the customer’s requirements, and to supplement the unit testing of the core
game components. This latter goal is included because unit testing the core game
components would be an extremely protracted process, and we can quite safely
assume that the individual components are correct if this test passes.

7

Required Scaffolding:
The test requires running the game using the sample ant brain and tiny world
provided by the customer. The output of the game is checked against the dump file
also provided by the customer. In order to achieve this, a function to read the dump
file state-by-state is required, and the ability to output the state of the the running
simulation at each iteration in the same format to check against the data in the dump
file is required. Also, an implementation of the customer’s pseudo-random number
generator is required.

Phase 3. Acceptance Testing

Acceptance Testing is carried out manually by the Quality Assurance team. Each test requires
a build of the game.

GUI Attributes to Test

1. Root menu navigation
2. Single Match setup

a. Picking Brains
b. Picking a World

3. Contest Setup
a. Picking Brains
b. Picking Worlds

4. Adding/Modifying Brains
5. Adding/Modifying worlds during single match setup
6. Adding/Modifying worlds during contest setup
7. Generating random worlds
8. Running a single match with graphics
9. Running a single match without graphics
10. Running a contest with graphics
11. Running a contest without graphics

8

Test Procedures

Phase 1.1. The Brain Parser
note: these tests can be found in the file test/model/AntBrainParser-test.js

White Box Tests

1. Function
_parseInt

Description
Checking that preceding zeroes are stripped correctly.

Scaffolding
none

Expected Results
_parseInt(“00003”) == 3

_parseInt(“00030”) == 30

_parseInt(“000”) == 0

2. Function

parseAntBrain

Description
Checking that the parser works with windows newlines (CRLF).

Scaffolding
A syntactically correct brain with windows newlines.
An expected result for deep comparison.

Expected Results
The parsed brain should be exactly the same as the expected result.

3. Function

parseAntBrain

Description
Checking that the parser works with mac newlines (CR).

Scaffolding
A syntactically correct brain with mac newlines.
An expected result for deep comparison.

Expected Results

9

The parsed brain should be exactly the same as the expected result.

4. Function
parseAntBrain

Description
Checking that the parser works with unix newlines (LF).

Scaffolding
A syntactically correct brain with unix newlines.
An expected result for deep comparison.

Expected Results
The parsed brain should be exactly the same as the expected result.

5. Function

parseAntBrain

Description
Test that an error is thrown when the brain has no states

Scaffolding
A file with a couple of lines but nothing on them. i.e. “\n\n”

Expected Results
An error is thrown.

6. Function

parseAntBrain

Description
Test that an error is thrown when the brain has a syntax error

Scaffolding
A brain with a syntax error. See the code for details.

Expected Results
An error is thrown.

10

7. Function
parseAntBrain

Description
Test that an error is thrown when a nonexistent state is pointed to

Scaffolding
A brain in which a nonexistent state is pointed. See the code for details.

Expected Results
An error is thrown.

8. Function

parseAntBrain

Description
Test that an error is thrown when a marker number is not in the range 0-5

Scaffolding
A brain in which an illegal marker number is given.

Expected Results
An error is thrown.

Phase 1.2. The World Parser
note: these tests can be found in the file test/model/AntWorldParser-test.js

White Box Tests

1. Function
_parseGridLine

Description
Check that it works for valid even lines

Scaffolding
valid even line “# 1 5 . # 9 - + “

expected output for deep comparison
Expected Results

deep comparison should return true

2. Function
_parseGridLine

11

Description
Check that it works for valid odd lines

Scaffolding
valid odd line “ 1 # . + -“

expected output for deep comparison
Expected Results

deep comparison should return true

3. Function
_parseGridLine

Description
Check that it throws an error if odd and even lines are swapped

Scaffolding
valid odd and even lines from tests 1 & 2

Expected Results
An error should be thrown in each case

4. Function

_parseGridLine

Description
Check that it throws an error for invalid characters

Scaffolding
invalid odd line “ 3 y . +”

Expected Results
An error should be thrown

5. Function

_parseGridLine

Description
Check that it throws an error when seeing an odd line with too many spaces at
the beginning

Scaffolding
invalid odd line “ 3 . # +”

Expected Results
An error should be thrown

6. Function

12

_isSurroundedByRocks

Description
Check that it returns true for a grid that is surrounded by rocks

Scaffolding
mock grid

Expected Results
It should return true

7. Function

_isSurroundedByRocks

Description
Check that it returns false for a grid that is not surrounded by rocks

Scaffolding
mock grid

Expected Results
It should return false

8. Function

_gridContains

Description
Check that it returns true if the grid contains the target cell type and false
otherwise (6 tests)

Scaffolding
mock grid

Expected Results
5 true, one false

13

9. Function
_getAdjacentCoord

Description
Check that it returns the correct coordinates for all directions on both odd and
even rows. (12 tests)

Scaffolding
expected coordinates returned

Expected Results
The expected coordinates should match the returned coordinates

10. Function

_getElementCoords

Description
Check that it returns the correct coordinates for the target element (7 tests)

Scaffolding
expected coordinates returned

Expected Results
The expected coordinates should match the returned coordinates

11. Function

_getElementBox

Description
Check that it returns the correct box for the given coordinates

Scaffolding
a set of coordinates and an expected box for deep comparison

Expected Results
The returned box should match the expected box

14

12. Function
_getElements

Description
Check that it returns elements correctly

Scaffolding
mock grid
expected element boxes

Expected Results
The returned element boxes should match the expected ones

13. Function

_cloneBox

Description
Check that a box is cloned correctly, and is not the same object

Scaffolding
mock box

Expected Results
The returned box should be deeply equal to the mock box, but have a different
memory location

14. Function
_cropBox

Description
Check that a box is cropped correctly, and that blank boxes should become
empty when cropped. (2 tests)

Scaffolding
mock box
expected cropped version of mock box
mock blank box

Expected Results
mock box should be deeply equal to the expected cropped version
blank box should become empty when cropped

15

15. Function
_attemptBoxIntersection

Description
Check that when an intersection is found, the correctly modified box is
returned, and the topRow attribute is modified correctly.

Scaffolding
mock box
expected output version of mock box
expected topRow

Expected Results
mock box should be deeply equal to the expected output
topRow should be as expected

16. Function
_containsLegalFoodBlobs

Description
Check that it returns true when given a grid with legal food blobs

Scaffolding
mock boxes containing legal food blobs (3 for different configurations/shapes)

Expected Results
Should return true for all three mock boxes.

17. Function
_containsLegalFoodBlobs

Description
Check that it returns false when given a grid with illegal food blobs

Scaffolding
mock boxes from test 16 modified to be illegal

Expected Results
Should return false for all three mock boxes.

16

18. Function
_isLegalHill

Description
Check that returns true for legal hills which start on both odd and even rows

Scaffolding
two legal hills boxes (one for odd, one for even)

Expected Results
Should return true for both mock boxes.

19. Function
_isLegalHill

Description
Check that returns false for illegal hills which start on both odd and even rows

Scaffolding
hills from Test 18 modified to be illegal

Expected Results
Should return false for both mock boxes.

Black Box Tests

1. Function
parseAntBrain

Description
Check that works correctly for contest-legal world

Required Data Files
test/model/maps/goodMap.dat

Expected Results
No error is thrown

2. Function
parseAntBrain

Description
Check that errors are thrown for contest-illegal worlds

Required Data Files
test/model/maps/badMap-foodNum.dat

test/model/maps/badMap-foodNum2.dat

test/model/maps/badMap-foodShape.dat

17

test/model/maps/badMap-hillShape.dat

test/model/maps/badMap-rockNum.dat

test/model/maps/badMap-rockTouchingHill.dat

test/model/maps/badMap-hillTouchingHill.dat

Expected Results
Errors are thrown for each badMap.

Phase 1.3. The World Generator
note: these tests can be found in the file test/model/RandomWorldGenerator-test.js

White Box Tests

1. Function
_superimpose

Description
Check that it returns false when a superimposition is not possible

Scaffolding
mock grid

Expected Results
should return false

2. Function

_superimpose

Description
Check that it returns true when a superimposition is possible, and that the
given grid now contains the result of the superimposition.

Scaffolding
mock grid
expected grid after superimposition

Expected Results
should return false
mock grid should be deeply equal to expected grid.

Black Box Tests

1. Function
generateRandomWorld

18

Description
Check that it generates contest-legal worlds (5 tests)

Scaffolding
World Parser required to check legality

Expected Results
each world should be parsed without an error being thrown

Phase 2. Integration Test
note: this test can be found in the file test/model/AntGame-test.js

Description
The customer requirements specify a sample ant brain, a small sample world, an algorithm
for generating pseudo-random numbers, and a dump file containing information regarding
the first 10,000 iterations of a game which pits the sample ant brain against itself on the small
sample world, using the specified pseudo-random number generator for the flip instructions.
For each iteration, the full state of the world is given.
This test uses the code I have written to run a simulation with the same parameters as the
game used to generate the dump file. The goal is to check that the state of the world in my
simulation matches the corresponding state in the dump file exactly for each iteration.

Scaffolding
Pseudo-random numbers

I used a arbitrary-precision integer library written by Matthew Crumley, John Tobey,
and Vitaly Magerya called BigInteger. See http://silentmatt.com/biginteger/ for
details.
This was necessary because JavaScript does not support integer overflow, and
attempting to simulate integer overflow without the BigInteger library proved
impossible, due to the way JavaScript handles number types (all numbers in
JavaScript are double-precision floats. Even the ones that look like integers).
Eventually I got a working version of the specified algorithm. See /src/model/debug/
DebugRNG.js for details.

File Reader

I had to write a small function to read in states from the dump file. It reads a kilobyte
at a time onto a buffer, and whenever it detects a full world state has been read in, it
returns the state. This needed to be done in parallel to the running of the algorithm,

19

http://silentmatt.com/biginteger/
http://silentmatt.com/biginteger/
http://silentmatt.com/biginteger/
http://silentmatt.com/biginteger/
http://silentmatt.com/biginteger/
http://silentmatt.com/biginteger/
http://silentmatt.com/biginteger/
http://silentmatt.com/biginteger/

because taking a 52mb file and splitting it on a regex, then doing comparisons etc etc
is not a fast way to do things.

Required Data Files
test/model/debug/dump.all
test/model/debug/sample.ant
test/model/debug/tiny.world

Expected Results
The output of the program should match the data in the dump file

Phase 3. Acceptance Tests

Phase 3.1. Root Menu Navigation

Preconditions

none
Tests

1. Description
Checking that the game loads into the root menu correctly

Actions
Navigate to the game page in a web browser

Conditions for passing
The game loads and the root menu is shown.

20

2. Description
Checking that clicking the link to the single match setup screen functions
correctly.

Actions
Load the game
Click the “Single Match” button

Conditions for passing
The single match setup screen is shown.

3. Description
Checking that clicking the link to the contest setup screen functions correctly.

Actions
Load the game
Click the “Contest” button

Conditions for passing
The contest setup screen is shown.

Phase 3.2. Single Match Setup

Preconditions

The user has navigated to the single match setup screen
Tests

1. Description
Check that clicking the link to the main menu works

Actions
Click the “Main Menu” breadcrumb link

Conditions for passing
The root menu is shown

21

2. Description
Check that toggling graphics on/off works

Actions
Click the graphics toggle button.
Click the graphics toggle button again.

Conditions for passing
The button changes from “with” to “without” and back to “with” again, with
appropriate color changes.

3. Description
Check that the number of digits in the ‘rounds’ input field cannot exceed six.

Actions
Type 7 or more numbers in the field.

Conditions for passing
The field stops accepting new digits after 6 are present

4. Description
Check that any non-numeric characters typed into the ‘rounds’ field disappear
when the user clicks away.

Actions
Type some non-numeric characters into the field
Click away from the field

Conditions for passing
The non-numeric characters are removed

5. Description
Check that clicking the link to pick the red brain works

Actions
Click the ‘pick’ button under the ‘Red Brain’ heading.

Conditions for passing
The Brain List screen is shown, and the currently selected red brain is
highlighted with its source code shown on the right hand side of the screen.

22

6. Description
Check that clicking the link to pick the black brain works

Actions
Click the ‘pick’ button under the ‘Black Brain’ heading.

Conditions for passing
The Brain List screen is shown, and the currently selected black brain is
highlighted with its source code shown on the right hand side of the screen.

7. Description
Check that clicking the link to pick the world works

Actions
Click the ‘pick’ button under the ‘World’ heading.

Conditions for passing
The World List screen is shown, and the currently selected world is
highlighted with its thumbnail shown on the right hand side of the screen.

Phase 3.2.a Single Match Picking Brains

Preconditions

The user has navigated to the single match setup screen
Tests

1. Description
Check that clicking the link to the main menu works while picking a red brain

Actions
Click the ‘Pick’ button under the ‘Red Brain’ header
Click the ‘Main Menu’ breadcrumb link

Conditions for passing
The user has been taken back to the main menu

23

2. Description
Check that clicking the link to the main menu works while picking a black
brain

Actions
Click the ‘Pick’ button under the ‘Black Brain’ header
Click the ‘Main Menu’ breadcrumb link

Conditions for passing
The user has been taken back to the main menu

3. Description
Check that clicking the link to the single match setup works while picking a
red brain

Actions
Click the ‘Pick’ button under the ‘Red Brain’ header
Click the ‘Single Match Setup’ breadcrumb link

Conditions for passing
The user has been taken back to the single match setup screen, and no changes
have been made to the selected components.

4. Description
Check that clicking the link to the single match setup works while picking a
black brain

Actions
Click the ‘Pick’ button under the ‘Black Brain’ header
Click the ‘Single Match Setup’ breadcrumb link

Conditions for passing
The user has been taken back to the single match setup screen, and no changes
have been made to the selected components.

5. Description
Checking that a red brain can be picked properly

Actions
Make a note of the currently selected red brain name
Click the ‘Pick’ button under the ‘Red Brain’ header
Hover the mouse over a brain which is not the current red brain
Click the green ‘use’ button that appears

Conditions for passing

24

The user has been taken back to the single match setup screen and the name of
the currently selected red brain has changed to that of the one chosen.

6. Description
Checking that a black brain can be picked properly

Actions
Make a note of the currently selected black brain name
Click the ‘Pick’ button under the ‘Black Brain’ header
Hover the mouse over a brain which is not the current black brain
Click the green ‘use’ button that appears

Conditions for passing
The user has been taken back to the single match setup screen and the name of
the currently selected black brain has changed to that of the one chosen.

Phase 3.2.b Single Match Picking World

Preconditions

The user has navigated to the single match setup screen
Tests

1. Description
Check that clicking the link to go to the main menu works

Actions
Click the ‘Pick’ button under the ‘World’ header
Click the ‘Main Menu’ breadcrumb link

Conditions for passing
The user has been taken back to the main menu

2. Description
Check that clicking the link to go back to the single match setup screen works

Actions
Click the ‘Pick’ button under the ‘World’ header
Click the ‘Single Match Setup’ breadcrumb link

Conditions for passing

The user has been taken back to the single match setup screen

3. Description

25

Check that the world can be picked properly
Actions

Make a note of the currently selected world name
Click the ‘Pick’ button under the ‘World’ header
Hover the mouse over a world which is not the currently selected one
Click the green ‘use’ button that appears

Conditions for passing
The user has been taken back to the single match setup screen and the name of
the currently selected world has changed to that of the one chosen.

Phase 3.3. Contest Setup

Preconditions

The user has navigated to the contest setup screen
Tests

1. Description
Check that clicking the link to the main menu works

Actions
Click the “Main Menu” breadcrumb link

Conditions for passing
The root menu is shown

2. Description
Check that clicking the link to select brains works

Actions
Click the ‘Select’ button above the ‘Brains’ list.

Conditions for passing
The Brain List is shown

3. Description
Check that clicking the link to select worlds works

Actions
Click the ‘Select’ button above the ‘Worlds’ list.

Conditions for passing
The World List is shown

26

Phase 3.3.a Contest Setup Picking Brains

Preconditions

The user has navigated to the brains list through the contest setup screen
Tests

1. Description
Check that clicking the link to the main menu works

Actions
Click the “Main Menu” breadcrumb link

Conditions for passing
The root menu is shown

2. Description
Check that clicking the link to the contest setup screen works

Actions
Click the “Contest Setup” breadcrumb link

Conditions for passing
The contest setup screen is shown

3. Description
Check that adding a brain causes it to disappear from the list

Actions
Click the ‘use’ button when hovering over a particular brain

Conditions for passing
The brain has disappeared from the list

4. Description
Check that an added brain appears in the list of selected brains on the contest
setup screen

Actions
Click the ‘use’ button when hovering over a particular brain
If there are still brains in the list, click the “Contest Setup” breadcrumb link

Conditions for passing
The contest setup screen is shown, and the chosen brain is in the list of
selected brains.

27

5. Description
Check that if all brains in the list are selected, then the user is automatically
taken back to the contest setups screen

Actions
Click the ‘use’ button on each brain in the list

Conditions for passing
The contest setup screen is shown, and all brains are present in the selected
brains list.

6. Description
Check that dismissed brains disappear from the selected brains list

Actions
Ensure that at least one brain has been chosen.
Navigate to the contest setup screen.
Hover over a brain and click the ‘dismiss’ button that appears

Conditions for passing
The Brain has disappeared from the list

7. Description
Check that dismissed brains reappear in the main brains list

Actions
Ensure that at least one brain has been chosen.
Navigate to the contest setup screen.
Hover over a brain and click the ‘dismiss’ button that appears
Click the ‘Select’ button above the ‘Brains’ list.

Conditions for passing
The dismissed brain is shown in the main brains list.

Phase 3.3.b Contest Setup Picking Worlds

Preconditions

The user has navigated to the worlds list through the contest setup screen
Tests

1. Description
Check that clicking the link to the main menu works

Actions
Click the “Main Menu” breadcrumb link

28

Conditions for passing
The root menu is shown

2. Description
Check that clicking the link to the contest setup screen works

Actions
Click the “Contest Setup” breadcrumb link

Conditions for passing
The contest setup screen is shown

3. Description
Check that adding a world causes it to disappear from the list

Actions
Click the ‘use’ button when hovering over a particular world

Conditions for passing
The world has disappeared from the list

4. Description

Check that an added world appears in the list of selected brains on the contest
setup screen

Actions
Click the ‘use’ button when hovering over a particular world
If there are still worlds in the list, click the “Contest Setup” breadcrumb link

Conditions for passing
The contest setup screen is shown, and the chosen world is in the list of
selected worlds.

5. Description
Check that if all worlds in the list are selected, then the user is automatically
taken back to the contest setup screen

Actions
Click the ‘use’ button on each world in the list

Conditions for passing
The contest setup screen is shown, and all worlds are present in the selected
worlds list.

6. Description
Check that dismissed worlds disappear from the selected worlds list

29

Actions
Ensure that at least one world has been chosen.
Navigate to the contest setup screen.
Hover over a world and click the ‘dismiss’ button that appears

Conditions for passing
The world has disappeared from the list

7. Description
Check that dismissed worlds reappear in the main worlds list

Actions
Ensure that at least one world has been chosen.
Navigate to the contest setup screen.
Hover over a world and click the ‘dismiss’ button that appears
Click the ‘Select’ button above the ‘Worlds’ list.

Conditions for passing
The dismissed world is shown in the main brains list.

8. Description
Check that contest-illegal worlds are not shown

Conditions for passing
There is no world in the list called “Tiny World”.

Phase 3.4 Adding/Modifying Brains

Preconditions

The user has navigated to the brains list through either the single match setup screen
or the contest setup screen.

Tests
1. Description

Check that clicking on a particular brain highlights the brain and shows its
source code in the box on the right hand side of the screen

Actions
Click a brain other than the one currently highlighted

Conditions for passing

30

The clicked brain is now highlighted and its source code is shown in the box
on the right hand side of the screen.

2. Description
Check that clicking the button to add a brain opens the editor dialog.

Actions
Click the button marked “add+”;

Conditions for passing
The edit dialog is shown with the header “Add New Brain” and blank fields.

3. Description
Check that clicking the cancel button in the edit dialog causes it to disappear

Actions
Click the button marked “add+”
Click the button marked ‘cancel’

Conditions for passing
The edit dialog has disappeared

4. Description
Check that clicking the close button in the edit dialog causes it to disappear

Actions
Click the button marked “add+”
Click the button marked ‘×’ at the top-right of the screen

Conditions for passing
The edit dialog has disappeared

5. Description
Check that clicking the darkened background while the edit dialog is open
causes it to disappear.

Actions
Click the button marked “add+”
Click somewhere on the darkened background

Conditions for passing
The edit dialog has disappeared

6. Description
Check that attempting to compile a malformed brain opens an alert with a
description of the error caught.

31

Actions
Click the button marked “add+”
Copy the given resource text into the source field.
Click the button marked “compile”

Conditions for passing
An alert showing the message “Malformed Instruction: ‘turn ahead 2’ at line
2” is displayed.

Resources
flip 1 0 1 ; this brain is not legal

turn ahead 2

32

7. Description
Check that attempting to compile a well formed brain without giving a name
creates and highlights a new brain called “Untitled Brain”.

Actions
Click the button marked “add+”
Copy the given resource text into the source field.
Click the button marked “compile”

Conditions for passing
The edit dialog disappears and a new brain appears at the top of the list
called “Untitled Brain”. It is highlighted and its source code is visible in the
box on the right hand side of the screen.

Resources
flip 2 1 0 ; this is an untitled brain

turn left 0

8. Description

Check that attempting to compile a well formed brain with a custom name
works properly.

Actions
Click the button marked “add+”
Type a name into the name field
Copy the given resource text into the source field.
Click the button marked “compile”

Conditions for passing
The edit dialog disappears and a new brain appears at the top of the list with
the given name. It is highlighted and its source code is visible in the box on
the right hand side of the screen.

Resources
flip 2 1 0 ; this brain is named

turn left 0

9. Description

Check that attempting to edit a brain by making it illegal doesn’t change it.
Actions

Ensure that there is a custom brain in the list
Hover over the custom brain and click the edit button (yellow with pencil
icon)
Change the name of the brain
Change the source of the brain such that it becomes illegal

33

Click the button marked “compile”
Click OK on the error alert box
Close the edit dialog

Conditions for passing
Neither the name or the source of the brain has changed.

10. Description
Check that attempting to edit a brain legally works properly.

Actions
Ensure that there is a custom brain in the list
Hover over the custom brain and click the edit button (yellow with pencil
icon)
Change the name of the brain
Change the source of the brain such that it remains legal
Click the button marked “compile”

Conditions for passing
The edit dialog disappears and both the name of the brain and the source code
have changed in accordance with the modifications made.

Phase 3.5 Adding/Modifying Worlds during single match setup

Preconditions

The user has navigated to the worlds list through the single match setup screen.
Tests

1. Description
Check that clicking on a particular world highlights the world and shows its
thumbnail on the right hand side of the screen

Actions
Click a world other than the one currently highlighted

Conditions for passing
The clicked world is now highlighted and its thumbnail is shown in the box on
the right hand side of the screen.

2. Description
Check that clicking the button to add a world opens the editor dialog.

Actions

34

Click the button marked “add+”;
Conditions for passing

The edit dialog is shown with the header “Add New World” and blank fields.

3. Description
Check that clicking the cancel button in the edit dialog causes it to disappear

Actions
Click the button marked “add+”
Click the button marked ‘cancel’

Conditions for passing
The edit dialog has disappeared

4. Description
Check that clicking the close button in the edit dialog causes it to disappear

Actions
Click the button marked “add+”
Click the button marked ‘×’ at the top-right of the screen

Conditions for passing
The edit dialog has disappeared

5. Description
Check that clicking the darkened background while the edit dialog is open
causes it to disappear.

Actions
Click the button marked “add+”
Click somewhere on the darkened background

Conditions for passing
The edit dialog has disappeared

35

6. Description
Check that attempting to compile a malformed world opens an alert with a
description of the error caught.

Actions
Click the button marked “add+”
Copy the given resource text into the source field.
Click the button marked “compile”

Conditions for passing
An alert showing the message “The ant world must contain at least one source
of food” is displayed.

Resources
5

5

#

 # . # - #

. # +

 # . # . #

#

7. Description

Check that attempting to compile a well formed world without giving a name
creates and highlights a new world called “Untitled World”.

Actions
Click the button marked “add+”
Copy the given resource text into the source field.
Click the button marked “compile”

Conditions for passing
The edit dialog disappears and a new world appears at the top of the list
called “Untitled World”. It is highlighted and its thumbnail is visible in the
box on the right hand side of the screen.

Resources
5

5

#

 # . # - #

. # +

 # . . 5 #

#

36

8. Description

Check that attempting to compile a well formed world with a custom name
works properly.

Actions
Click the button marked “add+”
Type a name into the name field
Copy the given resource text into the source field.
Click the button marked “compile”

Conditions for passing
The edit dialog disappears and a new world appears at the top of the list with
the given name. It is highlighted and its thumbnail is visible in the box on the
right hand side of the screen.

Resources
5

5

#

 # . # - #

. # +

 # . . 5 #

#

9. Description

Check that attempting to edit a world by making it illegal doesn’t change it.
Actions

Ensure that there is a custom world in the list
Hover over the custom world and click the edit button (yellow with pencil
icon)
Change the name of the world
Change the source of the world such that it becomes illegal
Click the button marked “compile”
Click OK on the error alert box
Close the edit dialog

Conditions for passing

Neither the name nor the source of the world has changed.

10. Description

37

Check that attempting to edit a world legally works properly.
Actions

Ensure that there is a custom world in the list
Hover over the custom world and click the edit button (yellow with pencil
icon)
Change the name of the world
Change the source of the world such that it remains legal
Click the button marked “compile”

Conditions for passing
The edit dialog disappears and both the name of the world and the source code
have changed in accordance with the modifications made.

Phase 3.6 Adding/Modifying Worlds during contest setup

Preconditions

The user has navigated to the worlds list through the contest setup screen.
Tests

1. Description
Check that attempting to compile a well-formed but contest-illegal world
opens an alert with a description of the error caught.

Actions
Click the button marked “add+”
Copy the given resource text into the source field.
Click the button marked “compile”

Conditions for passing
An alert showing the message “Too few lines” is displayed.

Resources
5

5

#

 # . # - #

. # +

 # . # 5 #

#

Phase 3.7 Generating Random Worlds

38

Preconditions

The user has navigated to the worlds list through either the single match setup screen
or the contest setup screen.

Tests
1. Description

Check that generating random worlds works
Actions

Click the button marked “generate+”
Conditions for passing

A new world called “Random World ”, where , is shown in the
worlds list. It is also highlighted and its thumbnail is shown on the right hand
side of the screen.

Phase 3.8 Running a Single Match with Graphics

Preconditions

The user has navigated to the single match setup screen
Tests

1. Description
Check that the match starts.

Actions
Click the button marked “Go”

Conditions for passing
The selected world is shown.
The team names are shown in the top bar
The breadcrumb navigation disappears.
The speed is shown, along with buttons marked ‘+’ and ‘-’
A button marked ‘cancel’ is shown.
The ants are moving/doing whatever their brain dictates.

2. Description
Check that the match finishes properly

Actions
Click the button marked “Go”
Wait for a while

Conditions for passing
A results dialog is shown, indicating the number of food gathered by each

39

team, along with the number of deaths experienced by each team.

3. Description
Check that the results dialog closes properly

Actions
Click the button marked “Go”
Wait for the results dialog to appear
Click the button marked ‘x’ at the top-right of the dialog.

Conditions for passing
The results dialog closes and the user is shown the single match setup screen.

4. Description
Check that increasing the speed has the desired effect

Actions
Click the button marked “Go”
Ensure that the number indicating speed is less than 10.
Click the button marked “+”

Conditions for passing
The number indicating the speed of the game increases by 1.
The ants do their thing slightly faster than before.

5. Description
Check that decreasing the speed has the desired effect

Actions
Click the button marked “Go”
Ensure that the number indicating speed is greater than 1.
Click the button marked “-”

Conditions for passing
The number indicating the speed of the game decreases by 1.
The ants do their thing slightly slower than before.

6. Description
Check that cancelling the game has the desired effect

Actions
Click the button marked “Go”
Click the button marked “Cancel”

Conditions for passing

40

The user is returned to the single match setup screen.

Phase 3.9 Running a Single Match without Graphics

Preconditions

The user has navigated to the single match setup screen
Tests

1. Description
Check that the match starts.

Actions
Click the button marked “Go”

Conditions for passing
The team names and the name of the world are displayed
The navigation disappears.
A button marked ‘cancel’ is shown.
A progress bar fills up

2. Description
Check that the match finishes properly

Actions
Click the button marked “Go”
Wait for a while

Conditions for passing
A results dialog is shown, indicating the number of food gathered by each
team, along with the number of deaths experienced by each team.

3. Description
Check that the results dialog closes properly

Actions
Click the button marked “Go”
Wait for the results dialog to appear
Click the button marked ‘x’ at the top-right of the dialog.

Conditions for passing
The results dialog closes and the user is shown the single match setup screen.
The navigation reappears.

4. Description

41

Check that cancelling the game has the desired effect
Actions

Click the button marked “Go”
Click the button marked “Cancel”

Conditions for passing
The user is returned to the single match setup screen.
The navigation reappears.

Phase 3.10 Starting a Contest

Preconditions

The user has navigated to the contest setup screen.
Tests

1. Description
Check that an error alert is displayed when the user attempts to start a contest
with no worlds

Actions
Choose some brains for the contest
Click the button marked “Go”.

Conditions for passing
An alert box appears with the message, “At least one world must be chosen”

2. Description
Check that an error alert is displayed when the user attempts to start a contest
with fewer than two brains

Actions
Choose one or more worlds.
Choose one or no brains.
Click the button marked “Go”.

Conditions for passing
An alert box appears with the message, “At least two brains must be chosen”

3. Description
Check that when sufficient brains and worlds are chosen, the contest begins.

Actions
Choose one or more worlds.
Choose two or more brains.

42

Click the button marked “Go”.
Conditions for passing

The contest fixtures/rankings screen is shown.
The fixtures are such that each brain plays against each other brain on every
world twice; once for each color.
Clicking the ‘played’ link shows an empty table.

Phase 3.11 Running a Contest

Preconditions

The user has navigated to the contest results/fixtures screen.
Tests
 1. Description

Check that playing all matches works properly
Actions

Click the button marked “Play All”
Conditions for passing

Games are played sequentially. When one finishes, the next one starts.
When all games are finished, the user is returned to the fixtures/rankings
screen.

 2. Description

Check that cancelling a match during a Play All session preserves the results
of any fixtures which have been played.

Actions
Click the button marked “Play All”
Wait until the second match starts.
Click the button marked “cancel”.

Conditions for passing
The user is taken back to the fixtures/rankings screen.
The fixture that was played is shown in the Played Fixtures list, and not in the
remaining fixtures list.
Two of the ants have played one fixture.

 3. Description
Check that playing individual fixtures works

43

Actions
Hover over a fixture
Click the button marked ‘play’ that appears

Conditions for passing
The game is played and finishes.
The fixture that was played is shown in the Played Fixtures list, and not in the
remaining fixtures list.
Two of the ants have played one fixture.

44

Test Results
The test results are an important and essential part of this document as they will record the
results of running each of the test phases within this deliverable and their resultant values for
the source code. For this section of the document, a record of the results for running each of
the test phases shall be described in accordance to the respective phases the results will be
derived from.
These are the following data that shall also be recorded:

● Results: A description/statement of the actual result of a test.

This will be a simple description of the resultant outcome of a test, it can be a basic
evaluation of the resultant output or input of a test but will serve a good deal for providing
informative text.

● Status: A statement based on the success or failure of a test.

The status is important in respect to the state of a test as it will give informative value on the
current situation a test is in. It may be in a critical status e.g. a failure where it could then be
passed onto as required for an Action to see if a corrective solution is available to provide a
successful test outcome.

● Action: If a test has failed, the testing phase could result for a corrective action to be
taken to try and provide a successful solution for the test.

The action part of the test results is an essential requirement as it will define the overall
outcome of a test. However, the Quality Assurance Team and the Programming Team
will have the final judgement on the actions for a test therefore preliminary evaluations on
the actions can be changed as the test develops. There must always be an action be it not
available or available the action will determine the overall justification for the final test
result(s).

Ideally, a testing framework (software) should be used to conduct some or most of the tests
in respect to the source code while some tests such as UI (User Interface) would be tested on
Internet browsers (major i.e.: Internet Explorer, Safari, Mozilla FireFox, Opera, Chrome).
This will therefore allow for an in depth outlook on the functionalities and the visual
capabilities of the game in its target working environment.
Nodeunit is the testing framework that has been chosen to aid most of the testing for the
source code of the Ant Game. It utilises simple syntax and powerful tools to allow for the
easy async unit testing that is used by JavaScript (Github, 2012.) Installation of Nodeunit is
required for its utilities to be used accordingly for the source code at hand (the Ant Game). A
test runner is used to analyse the criteria for testing and provides a legitimate presentation of
the tests carried out.

45

Unit Test Results

Brain Parser

Function Description Status Action

1.1
w.1

_parseInt Checking that preceding zeroes are stripped correctly PASS N/A

1.1
w.2

parseAntBrain Checking that the parser works with windows newlines PASS N/A

1.1
w.3

parseAntBrain Checking that the parser works with mac newlines PASS N/A

1.1
w.4

parseAntBrain Checking that the parser works with unix newlines PASS N/A

1.1
w.5

parseAntBrain Test that an error is thrown when the brain has no
states

PASS N/A

1.1
w.6

parseAntBrain Test that an error is thrown when the brain has a syntax
error

PASS N/A

1.1
w.7

parseAntBrain Test that an error is thrown when a nonexistent state is
pointed to

PASS N/A

1.1
w.8

parseAntBrain Test that an error is thrown when a marker number is
not in the range 0-5

PASS N/A

World Parser

Function Description Status Action

1.2
w.1

_parseGridLin
e

Check that it works for valid even lines PASS N/A

1.2
w.2

_parseGridLin
e

Check that it works for valid odd lines PASS N/A

1.2
w.3

_parseGridLin
e

Check that it throws an error if odd and even lines are
swapped

PASS N/A

1.2
w.4

_parseGridLin
e

Check that it throws an error for invalid characters PASS N/A

1.2
w.5

_parseGridLin
e

Check that it throws an error when seeing an odd line
with too many spaces at the beginning

PASS N/A

1.2
w.6

_isSurrounded
ByRocks

Check that it returns true for a grid that is surrounded
by rocks

PASS N/A

46

1.2
w.7

_isSurrounded
ByRocks

Check that it returns false for a grid that is not
surrounded by rocks

PASS N/A

1.2
w.8

_gridContains Check that it returns true if the grid contains the
target cell type and false otherwise (6 tests)

PASS N/A

1.2
w.9

_getAdjacentC
oord

Check that it returns the correct coordinates for all
directions on both odd and even rows. (12 tests)

PASS N/A

1.2
w.10

_getElementCo
ords

Check that it returns the correct coordinates for the
target element (7 tests)

PASS N/A

1.2
w.11

_getElementBo
x

Check that it returns the correct box for the given
coordinates

PASS N/A

1.2
w.12

_getElements Check that it returns elements correctly PASS N/A

1.2
w.13

_cloneBox Check that a box is cloned correctly, and is not the
same object

PASS N/A

1.2
w.14

_cropBox Check that a box is cropped correctly, and that blank
boxes should become empty when cropped. (2 tests)

PASS N/A

1.2
w.15

_attemptBoxIn
tersection

Check that when an intersection is found, the
correctly modified box is returned, and the topRow
attribute is modified correctly.

PASS N/A

1.2
w.16

_containsLega
lFoodBlobs

Check that it returns true when given a grid with legal
food blobs

PASS N/A

1.2
w.17

_containsLega
lFoodBlobs

Check that it returns false when given a grid with
illegal food blobs

PASS N/A

1.2
w.18

_isLegalHill Check that returns true for legal hills which start on
both odd and even rows

PASS N/A

1.2
w.19

_isLegalHill Check that returns false for illegal hills which start on
both odd and even rows

PASS N/A

1.2
b.1

parseAntBrain Check that works correctly for contest-legal world PASS N/A

1.2
b.2

parseAntBrain Check that errors are thrown for contest-illegal
worlds

PASS N/A

World Generator

Function Description Status Action

1.3
w.1

_superimpose Check that it returns false when a superimposition is
not possible

PASS N/A

47

1.3
w.2

_superimpose Check that it returns true when a superimposition is
possible, and that the given grid now contains the
result of the superimposition.

PASS N/A

1.3
b.1

generateRando
mWorld

Check that it generates contest-legal worlds (5 tests) PASS N/A

Integration Test

Description Status Action

2 Check output of program against dump file PASS N/A

Acceptance Tests Results Table

Description Chrom
e

Firefox IE9 Opera Safari Action

3.1 Checking that the game
loads into the root menu
correctly

PASS PASS PASS PASS PASS N/A

3.1
.2

Checking that clicking the
link to the Single Match
setup screen function
correctly

PASS PASS PASS PASS PASS N/A

3.1
.3

Checking that clicking the
link to the Contest setup
screen functions correctly

PASS PASS PASS PASS PASS N/A

3.2
.1

Check that clicking the link
to the Main Menu works

PASS PASS PASS PASS PASS N/A

3.2
.2

Check that toggling graphics
on/off works

PASS PASS PASS PASS PASS N/A

3.2
.3

Check that the number of
digits in the rounds input
field cannot exceed 6 digits

PASS PASS PASS PASS PASS N/A

3.2
.4

Check that any non-numeric
characters typed into
the ‘rounds’ field disappear
when the uses clicks away.

PASS PASS PASS PASS PASS N/A

3.2
.5

Check that clicking the link
to the pick the Red Brain
works

PASS PASS PASS PASS PASS N/A

48

3.2
.6

Check that clicking the link
to the pick the Black Brain
works

PASS PASS PASS PASS PASS N/A

3.2
.7

Check that clicking the link
to the World works

PASS PASS PASS PASS PASS N/A

3.2
.a.
1

Check that clicking the link
to the Main Menu works
while picking the Red Brain

PASS PASS PASS PASS PASS N/A

3.2
.a.
2

Check that clicking the link
to the Main Menu works
while picking the Black
Brain

PASS PASS PASS PASS PASS N/A

3.2
.a.
3

Check that clicking the link
to the Single Match setup
works while picking Red
Brain

PASS PASS PASS PASS PASS N/A

3.2
.a.
4

Check that clicking the link
to the Single Match set up
works while picking Black
Brain

PASS PASS PASS PASS PASS N/A

3.2
.a.
5

Checking that a Red Brain
can be picked properly

PASS PASS PASS PASS PASS N/A

3.2
.a.
6

Checking that a Black Brain
can be picked properly

PASS PASS PASS PASS PASS N/A

3.2
.b.
1

Check that clicking the link
to go to the Main Menu
works

PASS PASS PASS PASS PASS N/A

3.2
.b.
2

Check that clicking the link
to go back to the Single
Match set up screen works

PASS PASS PASS PASS PASS N/A

3.2
.b.
3

Check that the World can be
picked properly

PASS PASS PASS PASS PASS N/A

3.3
.1

Check that clicking the link
to the Main Menu works

PASS PASS PASS PASS PASS N/A

3.3
.2

Check that clicking the link
to the Select Brains works

PASS PASS PASS PASS PASS N/A

49

3.3
.3

Check that clicking the link
to select the World works

PASS PASS PASS PASS PASS N/A

3.3
.a.
1

Check that clicking the link
to the Main Menu works

PASS PASS PASS PASS PASS N/A

3.3
.a.
2

Check that clicking the link
to the Contest set up screen
works

PASS PASS PASS PASS PASS N/A

3.3
.a.
3

Check that adding a Brain
causes it to disappear from
the list

PASS PASS PASS PASS PASS N/A

3.3
.a.
4

Check that an added
Brain appears in the list
of Selected Brains in the
Contest set up screen

PASS PASS PASS PASS PASS N/A

3.3
.a.
5

Check that all Brains in the
list are selected, then the
user is automatically taken
back to the Contest set up
screen

PASS PASS PASS PASS PASS N/A

3.3
.a.
6

Check that dismissed Brains
disappear from the selected
Brains list

PASS PASS PASS PASS PASS N/A

3.3
.a.
7

Check that dismissed brains
reappear in the main brains
list

PASS PASS PASS PASS PASS N/A

3.3
.b.
1

Check that clicking the link
to the Main Menu works

PASS PASS PASS PASS PASS N/A

3.3
.b.
2

Check that clicking the link
to the Contest setup screen
works.

PASS PASS PASS PASS PASS N/A

3.3
.b.
3

Check that adding a World
causes it to disappear from
the list

PASS PASS PASS PASS PASS N/A

3.3
.b.
4

Check that an added World
appears in the list of selected
Brains on the Contest setup
screen

PASS PASS PASS PASS PASS N/A

50

3.3
.b.
5

Check that if all worlds in
the list are selected, then the
user is automatically taken
back to the Contest setup
screen

PASS PASS PASS PASS PASS N/A

3.3
.b.
6

Check that dismissed
Worlds disappear from the
selected Worlds list

PASS PASS PASS PASS PASS N/A

3.3
.b.
7

Check that dismissed
Worlds reappear in the main
Worlds list

PASS PASS PASS PASS PASS N/A

3.3
.b.
8

Check that contest-illegal
Worlds are not shown

PASS PASS PASS PASS PASS N/A

3.4
.1

Check that clicking on a
particular Brain highlights
the Brain and shows its
source code in the box on
the right hand side of the
screen

PASS PASS PASS PASS PASS N/A

3.4
.2

Check that clicking the
button to add a Brain opens
the editor dialog

PASS PASS PASS PASS PASS N/A

3.4
.3

Check that clicking the
cancel button in the edit
dialog causes it to disappear

PASS PASS PASS PASS PASS N/A

3.4
.4

Check that clicking the close
button in the edit dialog
causes it to disappear

PASS PASS PASS PASS PASS N/A

3.4
.5

Check that clicking the
darkened background while
the edit dialog is open
causes it to disappear

PASS PASS PASS PASS PASS N/A

3.4
.6

Check that attempting
to compile a malformed
Brain opens an alert with
a description of the error
caught

PASS PASS PASS PASS PASS N/A

51

3.4
.7

Check that attempting to
compile a well formed
Brain without giving a name
creates and highlights a
new Brain called “Untitled
Brain”.

PASS PASS PASS PASS PASS N/A

3.4
.8

Check that attempting to
compile a well formed Brain
with a custom name works
properly

PASS PASS PASS PASS PASS N/A

3.4
.9

Check that attempting to
edit a Brain by making it
illegal doesn’t change it.

PASS PASS PASS PASS PASS N/A

3.4
.10

Check that attempting to
edit a Brain legally works
properly.

PASS PASS PASS PASS PASS N/A

3.5
.1

Check that clicking on a part
icular worlds list through the
 single match setup screen.

PASS PASS PASS PASS PASS N/A

3.5
.2

Check that clicking the butto
n to add a world opens the e
ditor dialog.

PASS PASS PASS PASS PASS N/A

3.5
.3

Check that clicking the canc
el button in the edit dialog c
auses it to disappear.

PASS PASS PASS PASS PASS N/A

3.5
.4

Check that clicking the close
 button in the edit dialog cau
ses it to disappear.

PASS PASS PASS PASS PASS N/A

3.5
.5

Check that clicking the dark
ened background while the e
dit dialog is open causes it t
o disappear.

PASS PASS PASS PASS PASS N/A

3.5
.6

Check that attempting to co
mpile a malformed world op
ens an alert with a descriptio
n of the error caught.

PASS PASS PASS PASS PASS N/A

52

3.5
.7

Check that attempting to co
mpile a well formed world
without giving a name creat
es and highlights a new worl
d called "Untiled World".

PASS PASS PASS PASS PASS N/A

3.5
.8

Check that attempting to co
mpile a well formed world
with a custom name works p
roperly.

PASS PASS PASS PASS PASS N/A

3.5
.9

Check that attempting to edi
t a world by making it illega
l doesn't change it.

PASS PASS PASS PASS PASS N/A

3.5
.10

Check that attempting to edi
t a world legally works prop
erly.

PASS PASS PASS PASS PASS N/A

3.6
.1

Check that attempting to
compile a well-formed but
contest- illegal world opens
an alert with a description of
the error caught.

PASS PASS PASS PASS PASS N/A

3.7
.1

Check that generating
random world works.

PASS PASS PASS PASS PASS N/A

3.8
.1

Check that the match starts. PASS PASS PASS PASS PASS N/A

3.8
.2

Check that the match
finishes properly.

PASS PASS PASS PASS PASS N/A

3.8
.3

Check that the results dialog
closes properly.

PASS PASS PASS PASS PASS N/A

3.8
.4

Check that increasing the
speed has the desired effect.

PASS PASS PASS PASS PASS N/A

3.8
.5

Check that decreasing the
speed has desired effect.

PASS PASS PASS PASS PASS N/A

3.8
.6

Check that cancelling the
game has the desired effect.

PASS PASS PASS PASS PASS N/A

3.9
.1

Check that the match starts. PASS PASS PASS PASS PASS N/A

3.9
.2

Check that the match
finishes properly.

PASS PASS PASS PASS PASS N/A

53

3.9
.3

Check that the results dialog
closes properly.

PASS PASS PASS PASS PASS N/A

3.9
.4

Check that cancelling the
game has the desired effect.

PASS PASS PASS PASS PASS N/A

3.1
0.1

Check that an error alert
is displayed when the user
attempts to start a contest
with no words.

PASS PASS PASS PASS PASS N/A

3.1
0.2

Check that an error alert
is displayed when the user
attempts to start a contest
with fewer than two brains.

PASS PASS PASS PASS PASS N/A

3.1
0.3

Check that when sufficient
brains and worlds are
chosen, the contest begins.

PASS PASS PASS PASS PASS N/A

3.1
1.1

Check that playing all
matches works properly.

PASS PASS PASS PASS PASS N/A

3.1
1.2

Check that cancelling a
match during a Play All
session preserves the results
of any fixtures which have
been played.

PASS PASS PASS PASS PASS N/A

3.1
1.3

Check that playing
individual fixtures works.

PASS PASS PASS PASS PASS N/A

54

Overview

Finally, having fully analysed the criteria that was specified by the deliverable specifications
from the first and second deliverables, a justification on the success of the source code and
overall game can be concluded. By providing a Testing Specification the source code has a
solid background that provides as proof that it has working and rectified elements along with
the detection of prominent bugs/errors within the Ant Game.

This document was able to record and provide an outlook to all three types of testing that
were critical as well as the compulsory types of testing that were described in the previous
deliverables i.e.: White Box Testing and Black Box Testing. There are multiple variations of
presenting the testing data found within this document thus a clear overview of the Testing
for the developed Ant Game has been thoroughly invoked, designed and presented in a
reasonably organised fashion. Moreover, providing a descending order of phases that are
important to the testing phase has been recorded within this document as the team believed
that these specific factors of the source code require attention as these features and elements
serve the most critical parts to the programming of the Ant Game thus all of the phases which
the team thought relevant and essential to test are found here within this testing document.

With the integration and documentation of all relevant and available tests of the source code,
it is with confidence that Group 6: Team Good can provide an overall satisfactory result of
success to the creation and overall finishing of the Software Engineering Course, as a final
game - the Ant Game - has been produced, developed and finalised.

The series of tests provided the necessary evidence that the source code is up to par with
all testing specifications that were needed to be met. A variety of variables i.e. Overhead
Software, Test Descriptions etc. has been used to effectively portray the different test phases
the source code had to go through along with Test Results that efficiently highlight the key
facts about the test have also been formalised within this deliverable.

55

References & Bibliography

Introduction to Software Engineering, Software Engineering Course website. [online]
Available at: <https://studydirect.sussex.ac.uk/course/view.php?id=14546&rel=home>
[Accessed 6/6/2012].

Nodeunit, 2012. Github. [online] Available at: <https://github.com/caolan/nodeunit>
[Accessed 6 June 2012].

56

https://github.com/caolan/nodeunit
https://github.com/caolan/nodeunit
https://github.com/caolan/nodeunit
https://github.com/caolan/nodeunit
https://github.com/caolan/nodeunit
https://github.com/caolan/nodeunit
https://github.com/caolan/nodeunit
https://github.com/caolan/nodeunit
https://github.com/caolan/nodeunit

Sign Off

● Analysis Team

● Design Team

● Programming Team

● Quality Assurance Team

57

58

